There Are No Safe Virus Tests

William F. Dowling
The American Mathematical Monthly, Vol. 96, No. 9. (Nov., 1989), pp. 835-836.

Stable URL:
http://links jstor.org/sici?sici=0002-9890%28198911%2996%3A9%3C835%3ATANSVT%3E2.0.CO%3B2-R

The American Mathematical Monthly is currently published by Mathematical Association of America.

Your use of the JSTOR archive indicates your acceptance of JSTOR’s Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. JSTOR’s Terms and Conditions of Use provides, in part, that unless you
have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and
you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www jstor.org/journals/maa.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or
printed page of such transmission.

JSTOR is an independent not-for-profit organization dedicated to creating and preserving a digital archive of
scholarly journals. For more information regarding JSTOR, please contact support@jstor.org.

http://www.jstor.org/
Wed Mar 1 15:27:19 2006

1989] THE TEACHING OF MATHEMATICS 835

particularly appropriate to point out that one advantage of approximation via
iteration is that the accuracy of the approximation is limited only by the arithmetic
of the machine doing the work. This is in marked contrast to polynomial or rational
approximations, for example, which must usually be completely reconstructed in
order to improve accuracy.

REFERENCES

1. Kendall E. Atkinson, An Introduction to Numerical Analysis, Wiley, New York, 1978.

2. J. Hart, et al., Computer Approximations, Wiley, New York, 1968.

3. Fortran Version 5 Common Library Mathematical Routines Reference Manual, Control Data
Corporation, 1979.

4. Walter Gander, On Halley’s iteration method, this MONTHLY (92) 131-134.

George H. Brown, Jr., On Halley’s variation of Newton’s method, this MONTHLY (84) 726-728.

6. J. M. Borwein and P. B. Borwein, The arithmetic-geometric mean and fast computation of
elementary functions, SIAM Rev., 26, 351-366.

7. , Pi and the AGM, Wiley-Interscience, New York, 1987.

©w

There Are No Safe Virus Tests

WiLLiaM F. DOWLING
Department of Mathematics and Computer Science, Drexel University, Philadelphia, PA 19104

This note gives a proof that no program can both test its input for the presence of
‘a virus and simultaneously be guaranteed not to spread a virus itself. (You may

define “virus” any way you please, as long as the definition is extensional.) This
immediate corollary of Rice’s Theorem [1] is proved by a direct diagonalization and
offered as an antidote (not a vaccine) to boredom in the elementary computability
course during the presentation of the halting problem.

Programs running on modern computers, unlike the executions of Turing ma-
chine programs, as usually conceived, run “in an environment.” This is to say that
when a program is executed, it is run as a subprogram of the logically independent
program, the operating system, which is responsible for such bookkeeping chores as
primary and secondary memory management, process management, recording
statistics, and so on. A program that, when run, alters the code of the operating
system, is called a virus. (When a new version of the operating system is written
legitimately, it replaces, not alters, the former operating system.) This is a somewhat
less restrictive definition of virus than others have proposed [2], in that no particular
behavior is required of the modified operating system. For instance, it is frequently
required that a virus have the effect of inserting its own code into other executable
programs. Such restrictions are unnecessary for the result we seek.

It would be nice if we could detect automatically which programs are viruses and
which are not by submitting them to a filter program, thus avoiding the expense and
inconvenience of unwittingly and possibly harmfully altering our operating system.
We now show there can be no program that does this correctly for every possible
input, while guaranteed not to spread a virus itself.

We begin by fixing an operating system OS, and making a definition.

836 WILLIAM F. DOWLING [November

DEFINITION 1. Program P spreads a virus on input x if running P under operating
system OS on input x alters OS. Otherwise it is safe on input x. A program is safe if it
is safe for all inputs.

We also make the assumption that there exist viruses for OS, otherwise there would
be no necessity for our test. Now for the sake of contradiction, let us assume there is
some safe program IS-SAFE that decides the safety of running an arbitrary
program P on arbitrary input x. Thus

yes if P is safe on input x

IS-SAFE(P, x) = {no otherwise

Given such a program and our assumption that there exist viruses, it is easy to write
a program D() of one argument that has the following behavior:

D(P) = {Write “Have a nice day” if IS-SAFE(P, P) = no
alter OS otherwise.

We can now show that IS-SAFE cannot be both safe and correct by examining
the behavior of D on input D. If D is safe on input D this can only be because it
has not executed the otherwise clause, that is, because IS-SAFE(D, D) = “no,”
thus showing that IS-SAFE is not correct. On the other hand, if D alters OS on
input D, there are two possibilities. On one hand, the call to IS-SAFE(D, D) may
be returning “yes” so the otherwise clause in D is being executed, in which case
IS-SAFE is not correct. On the other hand, if IS-SAFE returns “no” (so D simply
prints “Have a nice day”) the assumption that D is unsafe on input D means that
the call to IS-SAFE must be the culprit, that is, IS-SAFE is not safe. We conclude
that the assumption of the existence of a safe, correct program that runs on OS and
checks the safety of its input must be incorrect; there can be no such program
IS-SAFE.

REFERENCES

1. H. Rogers, Theory of Recursive Functions and Effective Computability, McGraw-Hill, New York,
1967.
2. L. Witten, Computer (in)security: infiltrating open systems, Abacus, 4 (Summer 1987) 7-25.

